

DERFAIC the "Digitally Enhanced RF and Analog ICs" Research Group

Assoc. Prof. Marius Neag

Overview

- Microelectronics R&D activities @ Derfaic Group
 - Team, resources and areas of expertise
 - Design of Analog & Mixed-Signal ICs and Systems
 - IC Characterization, Modelling, Multivariate yield analysis
 - Sample projects: Arpic1; AFE for automotive Hall sensor; the "Home Electronic Laboratory"
- Recent industry-related R&D projects
 - The PartEnerIC project within the POC framework
 - ✓ Brief description & Main results
 - ✓ Example of a PMIC developed: Ultra-Low (<1uA) LDO</p>
 - The iDev4.0 project within the Ecsel framework
 - ✓ Brief description & Main results
 - Design methodologies for PMICs based on electro-thermal simulator
- Plans for future co-operation with industry

"Digitally Enhanced RF and Analog IC" Group – DERFAIC Research Group

http://icdesign.utcluj.ro

Team:

- 8 staff members
- 2 post-doc researchers
- o 6 PhD students
- 4 Undergraduate & 1 Master students with scholarships from industry

Labs and Affiliations:

- o 2 research labs
- access to 3 general-purpose electronics labs
- access to EMC lab and anechoic enclosure
- o own farm of simulation servers
- Cadence Academic Network affiliation since 2010
- Europractice membership
- Romanian Academic Platform for IC Development

- Design of RF, Analog and Mixed–Signal Integrated Circuits
- Machine Learning for post-Si verification and big data analysis; yield analysis and prediction, yield detractors
- Methodologies for systematic and optimized IC design
- Digital techniques for enhancing analog IC performance
- Statistical analysis and testing of integrated circuits & systems
- Electronic circuits and systems for acoustics

DERFAIC – IC design and silicon implementation

Power Management ICs

Linear

- LDOs with fast response to load transients
- o "Any Cload" LDOs
- Low-power Voltage references and regulators
- o Start-up circuits
- Current sensing

Switched-Mode

- Switched-Cap DC-DC converters
- Inductor-based DC-DC converters for light loads
- Digital control for SMPS

Frequency synthesis Functional blocks for GHz apps.

- LC- and ring-VCOs
- Programmable frequency dividers

Fast-lock Integer-N PLLs

- Frequency comparators
- Early-late detector

Analog Front-Ends

Amplifiers

- LNA, instrument amplifiers
- Programmable-gain & constant BW
- Power Buffers

Continuous-time Filters

- Very low and very high frequency
- Tunable/programmable/re-configurable

RF ICs - Transceivers for wired and wireless comms. Radio transceivers

- LNAs and Mixers
- Base-band circuitry
- o Tx PPA

Transceivers for wired communications

- Rx and Tx analog interfaces
- Clock generation and clock recovery

DERFAIC – Systems with ICs

Power Management

Low-power

- SMPS based on SC DC-DC converters +LDOs
- SMPS with digital control
- o Inductive power transfer

Renewable

• MPPT control for PWM-based DC-DC converters

Power Quality

Systems for power quality factor correction

Sensors

Bias and control circuitry

- CMOS drivers for MEMS body-biasing
- CMOS drivers for MEMS control

AFE

- o Instrument amplifiers
- Continuous-time filters

Transceivers

Wearable sensors

- Low-power Rx and Tx
- Analog signal processing
- Example: Wearable health monitors with TransferJET data transfer

Impedance-based sensors

- Rx and Tx analog circuitry
- Apps in geology, food safety and health

Acoustics

Equalizers for hearing aids Equalizers for medium- to large-volume enclosed spaces Modelling acoustic features of various enclosures

Examples of IC Design Projects AFE for automotive Hall sensor

- ASIC design : two versions of LNA + BPF, 0.18 um CMOS
- Design of test platform
- Complete characterization, including noise sensitivity

Examples of IC Design Projects: Standard CMOS One-ASIC Drivers for MEMS sensors and actuators

Sim Results

VIN VDD ASIC External CMOS Driver for Positive Positive VPOS DC-DC Voltage Power-ENPOS generator Stage MEMS Feedback FB Network μC EA Body /Electrode DIG. Power stage of Æ CTRL linear regulators VMEMS DAC VDAC External Driver for Negative Negative DC-DC **V**NEG ENNEG Voltage Power generator Stage VSS VSS GND

- Four operation modes:

"NEG" and "POS" : outputs V_{MEMS} programmable between [-45V, 0] and [0, +45 V], with a resolution of 200mV
"Zero" : output shorted to GND
"Open": output left floating

ECHNICAL UNIVERSIT

The Home Electronics Laboratory HELP kit = Lab-in-a-bag

OF CLUJ-NAPOCA

The Home Electronics Laboratory HELP kit electronic board

Main recent EU-funded projects (+2.5Million Euro)

The PartEnerIC project – https://parteneric.utcluj.ro/

Aim: R&D in Methodologies for design, optimization and statistical analysis of Power Management ICs for, and in collaboration with, industrial partner = Infineon Technologies **Duration:** 5 years (2016-2022) **Budget:** 2+ million Euro (10.1 million RON)

Main Results:

- 7 test-chips comprising 9 LDOs, 3 DC-DC converters & several functional blocks such as: current sense, start-up, bandgaps
- New machine learning-based methodologies for verification, characterization and modeling of LDO/DC-DC integrated circuits
- New methodologies for systematic and optimized design of PMICs
- 3 PhD theses completed; 29 papers published, of which 17 in ISI journals
- 3 patent applications, one already granted by the German Patent and TM Office

The Integrated Development 4.0 project – http://www.idev40.eu/

Consortium of 20+ partners from 6 EU countries, led by Infineon Technologies Duration: 2.5 years (2019-2022) Budget: 500K+ Euro Main Results:

- Novel methodologies for yield analysis & prediction, identification of yield detractors
- Methodologies for Multiphysics (Electro-Thermal-Mechanical) Analysis of Power ICs
- 1 PhD thesis completed; 10+ papers published, of which 4 in ISI journals

The PartEnerIC project: Ultra-low power LDO in 0.18um CMOS

Low-power LDO with fast response to load transients Stability Analysis

ECHNICAL UNIVERSITY

Low-power LDO with fast response to load transients A graphical method for stability analysis

Low-power LDO with fast response to load transients Sizing conditions for frequency compensation

TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

Low-power LDO with fast response to load transients Silicon implementation

The PartEnerIC project: Ultra-low power LDO in 0.18um CMOS

Ultra-low power LDO with fast response to load transients Measurement results

PARAMETER	[13]	[14]	This work
Year	2019	2020	2020
CMOS [um]	0.065	0.065	0.13
FO4Delay(ps) ^{c)}	17	17	35
Supply Voltage [V]	0.95-1.2	0.95-1.2	1.2-1.5
Output Voltage [V]	0.8	0.8	1
Dropout Voltage [mV]	150	150	100
lq [μA]	13.9	14	0.7
DC Line Reg.[mV/V]	0.48	12	16.6
DC Load Reg. [µV/mA]	8.03	90	100
PSR [dB]	47@10kHz	33@10kHz	30@10kHz ^{d)}
CL [F]	0-100p	0-100p	0-1µ
ΔVout_pkpk= +ΔVout – (– ΔVout) [mV]	549	363	200
IL _{MIN} – IL _{MAX}	0-100mA	0-100mA	0-100mA
Avg. IL t _{rise} (ns)	50	132.5	1000
Rise time ratio (K)	1	2.65	20
FOM1 [fs]	7.63**	50.82	0.19**
FOM2 [mV]	0.08	0.13	0.04
FOM3 [V/µs]	4.49	4.14	0.15

Measured response to a load step of 100mA in 1µs for VDD=1.5Vand CL=0F (plus 50pF from the scope probe)

TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

Methodologies for designing over-current and over-temperature protection circuitry for PMICs

Industry-funded projects 2021-2024

Advances in Data Science and Visualization

Aim: R&D for modeling the dependence of inline, process and electrical parameters measurements collected during the IC fabrication process

Duration: 1.5 years (2022-2023) Team: 1 professor, 1 post-doc, 2 PhD students

Main Results so far:

- Novel methodology for inline vs. process parameters correlation analysis
- New web-based big data analysis and report generation tool

High-performance Power Management Integrated Circuits

Aim: Development and validation of design methodologies for several types of LDOs, as well as support and control circuitry for linear and switched-mode regulators: **Duration:** 3 years (2021-2024)

Team: 2 professors, 1 post-doc researcher, 3 PhD students, 1 master student **Main Results so far:**

- Novel methodologies for stability analysis of LDOs with multiple feedback loops
- Novel topologies and design methodologies for LDOs for automotive applications

Plans for co-operation with industry in near future

National Plan for Recovery and Resilience (PNRR)

TUCN was nominated (along with the TU in Bucharest, Iasi, Timisoara) as hosts for Centres of Excellence in Microelectronics

Important Project of Common European Interest (IPCEI) Microelectronics

DERFAIC participates in two projects driven
 by Bosch Romania and NXP Romania

• Direct engagements

R&D consultancy projects

- Summer school + Internships within the DERFAIC group
- Company-funded Scholarships for undergraduate & Master students

Contact us

Looking forward for your feedback:

Marina.Topa@bel.utcluj.ro

Marius.Neag@bel.utcluj.ro